
Electrospray Plume Modeling 

for Rapid Life and Performance 

Analysis

Shehan Parmar, Dr. Adam Collins, and 
Prof. Richard Wirz
UCLA Plasma and Space Propulsion Laboratory
University of California, Los Angeles

Copyright © by Shehan Parmar, University of California Los Angeles. Published by the American Institute of 

Aeronautics and Astronautics, Inc., with permission



Shehan Parmar, SciTech 2022 2

Outline

• Background and Motivation

– Primary Life-Limiting Failure 

Mechanisms

– Experimental Plume Profiles 

Measurements

• Data-Driven Modeling Approach

– Physics-based Simulations

– Surrogate Model 

– Bayesian Inference

• Key Results 

– Sensitivity Analysis

– Inferred Initial Conditions
LISA Space Mission



Shehan Parmar, SciTech 2022 3

Research Motivation

• Overspray is a primary life-limiting 

failure mechanism for electrospray 

thrusters 

• Minimizing mass flux towards the 

extractor and accelerator grids can 

increase lifetime and thrust 

• Complete characterization of an 

electrospray plume by modeling 

and experiment is necessary to 

better understand thruster lifetime 

and performance under various 

operating conditions
[1] A. Thuppul, P. L. Wright, A. L. Collins, J. K. Ziemer, and R. E. Wirz, “Lifetime Considerations for Electrospray Thrusters,” Aerospace, vol. 7, no. 8. 2020

[2] Ziemer, J. K., “Performance of Electrospray Thrusters,” 31st International Electric Propulsion Conference, Ann Arbor, MI,

USA, 2009, p. pp. 1–13.

1

2

3 ሶ𝑚𝑒𝑥𝑡, Propellant mass flux toward extractor grid

ሶ𝑚𝑎𝑐𝑐, Propellant mass flux toward accelerator grid

𝑇, Thrust from electrospray emission through accelerator grid
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Super-Gaussian Mass Flux and Current Density Profiles

Anirudh Thuppul, Peter L. Wright, Adam L. Collins, N. M. Uchizono, and Richard E. Wirz, “Mass Flux and Current Density Distributions of Electrospray Plumes,” Journal of Applied Physics (2020)

Super-Gaussian Form:

𝑝 𝜃 = 𝐴 ∗ exp −
𝜃 − 𝜃𝑡

2

2𝜎2

𝑛

A - amplitude

σ – standard deviation

𝜃 – plume angle

𝜃𝑡 – plume tilt off central axis

n – sharpness (Gaussian for n=1)
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PEPPER – Problem Geometry

𝕄P: 𝛉𝐢, 𝛄𝐢, 𝑽 → θf
𝑑2 Ԧ𝑟

𝑑𝑡2
= −

𝑞

𝑚
∇𝜙

Ԧr 𝑡 = Ԧ𝑟𝑖 + Ԧ𝑣𝑖𝑡 +
1

2

𝑞

𝑚
𝐸𝑡2

Charged Particle EOM:

𝑣0 =
𝑄

𝐴𝑐𝑎𝑝
V = 𝑉𝑒𝑚𝑖𝑡

𝑣 = 𝑣𝑗𝑒𝑡
V = 𝑉𝑗𝑒𝑡

Initial Conditions Needed:
•

𝑞

𝑚
: specific charge

• 𝑟𝑖, 𝑧𝑖: initial positions

• Ԧ𝑣𝑖: initial velocity, where 

si = | Ԧ𝑣𝑖|, 𝛾𝑖 = tan
𝑣𝑟

𝑣𝑧

Initial Conditions

(*which don’t require 
𝑞

𝑚
):

𝜃𝑖: initial position based on 𝑟𝑖 , 𝑧𝑖
𝛾𝑖: initial emission angle

𝑉: electrode voltage

Trajectories are the same if:
𝐾𝐸

𝑞
=
1

2

𝑚

𝑞
Ԧ𝑣𝑖
2 = 𝑉𝑗𝑒𝑡 − 𝑉𝑒𝑚𝑖𝑡

Plume 

Region

Interaction Region

(𝒓𝒇, 𝒛𝒇)

𝒔𝒊

𝜸𝒇

𝜽𝒇

(𝒓𝒊, 𝒛𝒊)

𝒛

𝒓

𝒔𝒇

𝜽𝒊

𝜸𝒊

𝑬𝒆𝒙𝒕
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Results – COMSOL Charged Particle Tracing

Electric Field Solver: 

𝑬 = −∇𝑉

BCs: 𝑉𝑒𝑚𝑖𝑡, 𝑉𝑒𝑥𝑡𝑟, 𝑉𝑎𝑐𝑐 , 𝑉𝑏𝑒𝑎𝑚 𝑑𝑢𝑚𝑝

Charged Particle Tracing: 

𝑑 𝑚𝑝𝒗

𝑑𝑡
= 𝑭𝑒 = 𝑒𝑍𝑬

where 𝑒 is elementary charge, 𝑚𝑝 is the 

particle mass, and 𝑍 is the charge 

number.

[1] M. Gamero-Castaño, “Characterization of the electrosprays of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide in vacuum,” Phys. Fluids, vol. 20, no. 3, p. 32103, Mar. 2008, doi: 10.1063/1.2899658.

[2] M. Gamero-Castaño and A. Cisquella-Serra, “Electrosprays of highly conducting liquids: A study of droplet and ion emission based on retarding potential and time-of-flight spectrometry,” Phys. Rev. Fluids, vol. 6, no. 1, p. 13701, Jan. 2021, doi: 

10.1103/PhysRevFluids.6.013701.
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Surrogate Modeling – Polynomial Chaos Expansion

𝑌𝑃𝐶𝐸 = 𝕄(𝐗)

where an analytical “metamodel” model for 𝑌𝑃𝐶𝐸 is 

obtained by sampling some input distribution in 𝑿 to 

then map these random (or uncertain) variable inputs 

to a given quantity of interest. 

𝕄 𝐗 = 

𝛼∈𝑁𝑑

𝑦𝛼Ψ𝛼(𝑿)

is the functional form of the PCE, where 𝑦𝛼 are the 

coefficients or “mode strengths” and Ψ𝛼 are the basis 

functions, or “mode functions”.

[1] R. Jin, W. Chen, and T. W. Simpson, “Comparative studies of metamodelling techniques under multiple modell ing criteria,” Struct . Multidiscip. Optim., vol. 23, no. 1, pp. 1–13, 2001, doi: 10.1007/s00158-001-0160-4.
[2] K. Cheng, Z. Lu, C. Ling, and S. Zhou, “Surrogate-assisted global sens itivity analysis: an overview,” Struct. Multidiscip. Optim., vol. 61, no. 3, pp. 1187–1213, 2020, doi: 10.1007/s00158-019-02413-5.

[3] D. Shen, H. Wu, B. Xia, and D. Gan, “Polynomial Chaos Expansion for Parametric Problems in Engineering Systems:  A Review,” IEEE Syst. J ., vol. 14, no. 3, pp. 4500–4514, 2020, doi: 10.1109/JSYST.2019.2957664.

[4] E. Torre, S. Marell i, P. Embrechts, and B. Sudret, “Data-driven polynomial  chaos expansion for machine learning regression,” J. Comput. Phys., vol. 388, pp. 601–623, 2019, doi: https://doi.org/10.1016/j .jcp.2019.03.039.
[5] M. Hadigol and A. Doostan, “Leas t squares polynomial chaos expansion:  A review of sampling strategies,” Comput. Methods Appl. Mech. Eng., vol. 332, pp. 382–407, 2018, doi: https://doi.org/10.1016/j .cma.2017.12.019.

These trajectories are all created from one analytical 

function, namely a Polynomial Chaos Expansion (PCE)

𝕄P: 𝛉𝐢, 𝛄𝐢, 𝐕𝐚𝐜𝐜 → θf
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Results – Surrogate Modeling

Goal: By how much (relatively) does each input parameter, 𝛉𝐢, 𝛄𝐢, and 𝐕𝐚𝐜𝐜, 
influence the output parameter, 𝛉𝒇, in 𝕄PCE: 𝛉𝐢, 𝛄𝐢, 𝐕𝐚𝐜𝐜 → θf?

❖ Grid impingement is most sensitive 

to the distribution of initial emission 

angles of droplets entering the plume 

region domain

Quantitative results showing a sensitivity 

analysis of model input parameters using 

variance-based Sobol indices
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Results – Bayesian Inference  Super-Gaussian Profiles

Anirudh Thuppul, Peter L. Wright, Adam L. Collins, N. M. Uchizono, and Richard E. Wirz, “Mass Flux and Current Density Distributions of Electrospray Plumes,” Journal of Applied Physics (2020)

Super-Gaussian Form:

𝑝 𝜃 = 𝐴 ∗ exp −
𝜃 − 𝜃𝑡

2

2𝜎2

𝑛

A - amplitude

σ – standard deviation

𝜃 – plume angle

𝜃𝑡 – plume tilt off central axis

n – sharpness (Gaussian for n=1)

𝑨, 𝝈, 𝜽, 𝜽𝒕, and 𝒏 are physically-informed, 

unknown parameters that inform the 

function form of the following likelihood 

function. 
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Results – Bayesian Inference

Prior Distributions

𝐴1~𝒩 200, 100 ; 𝜇1~𝒩 0, 10−3 ;
𝜎1~𝒩 100, 50 ; 𝑛1~𝒩 1.5, 1

Likelihood Function

𝑝𝑟𝑜𝑏 ሶ𝑚 𝜃 𝑈𝐶𝐿𝐴 𝛾𝑖 , 𝐼 =ෑ

𝑖

𝑁

𝑝𝑟𝑜𝑏( ሶ𝑚 𝜃 𝑖|𝛾𝑖 , 𝐼)

𝑓(𝜃𝑓) =𝕄 𝜃𝑖 , 𝒇 𝜸𝒊 , 𝑉𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 → ሶ𝑚(𝜃)

𝑓 𝛾𝑖 = 𝑨𝟏 exp −
𝛾𝑖 − 𝝁𝟏

2

2𝝈𝟏
2

𝒏𝟏

Posterior distributions (left) for unknown variables in 

PEPPER model—𝒇 𝜸𝒊 and “trace” plot (right) of all, 1500 

drawn posterior distribution samples. 

𝐴1~𝒩 200, 100

𝜇1~𝒩 0, 10−3

𝜎1~𝒩 100, 50

𝑛1~𝒩 1.5, 1

𝑝𝑟𝑜𝑏 𝑋 𝑌, 𝐼 =
𝑝𝑟𝑜𝑏 𝑌 𝑋, 𝐼 ⋅ 𝑝𝑟𝑜𝑏 𝑋 𝐼

𝑝𝑟𝑜𝑏 𝑌 𝐼

Bayes’ Theorem 

X, hypothesis X

Y, data

I, implicit model assumptions

𝑝𝑟𝑜𝑏 𝑋 𝑌, 𝐼 =
𝑝𝑟𝑜𝑏 𝑌 𝑋, 𝐼 ⋅ 𝑝𝑟𝑜𝑏 𝑋 𝐼

𝑝𝑟𝑜𝑏 𝑌 𝐼
𝑝𝑟𝑜𝑏 𝑋 𝑌, 𝐼 =

𝑝𝑟𝑜𝑏 𝑌 𝑋, 𝐼 ⋅ 𝑝𝑟𝑜𝑏 𝑋 𝐼

𝑝𝑟𝑜𝑏 𝑌 𝐼
𝑝𝑟𝑜𝑏 𝑋 𝑌, 𝐼 =

𝑝𝑟𝑜𝑏 𝑌 𝑋, 𝐼 ⋅ 𝑝𝑟𝑜𝑏 𝑋 𝐼

𝑝𝑟𝑜𝑏 𝑌 𝐼



Shehan Parmar, SciTech 2022 11

PEPPER – Bayesian Inference Results

Unknown 

Parameter

Mean Std. Deviation

𝐴1 𝟒𝟏. 𝟐𝟒𝟔 𝟎. 𝟑𝟎𝟔

𝜇1 𝟎. 𝟎𝟎𝟎 𝟎. 𝟎𝟎𝟓

𝜎1 𝟐𝟓. 𝟓𝟑𝟑 𝟎. 𝟓𝟖𝟓

𝑛1 𝟑. 𝟏𝟓𝟖 𝟎. 𝟑𝟑𝟎

Complete mass flux profile for unaccelerated domain 

based on sampled posterior distributions.
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PEPPER – Bayesian Inference Results
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Conclusions

Thank you!

Research Objective: Determine initial conditions near emission site 
to explain observed Super-Gaussian plume profiles

• Data-driven modeling approach applied surrogate model and 
Bayesian inference to determine quantify unknown initial 
condition parameters

• Super-Gaussian distributions in initial emission angles result in 
downstream mass flux profiles observed experimentally

• Regions of higher uncertainty inform desirable experimental data 
points

Next Steps: 

• Compare accelerated and unaccelerated electrospray domains

• Compare predicted charge density profiles with mass flux

• Use ሶ𝑚 𝜽 → Lifetime
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BONUS SLIDE: Research Overview

Motivation:

❖ Technological need for improved electrospray lifetime and performance for future missions of interest.

❖ Scientific need to clarify governing physics in electrospray plume expansion.

Objective:

❖ Determine initial conditions near emission site to explain observed Super-Gaussian plume profiles 

Hypotheses:

❖ Droplet dynamics in the plume region are primarily governed by the external electric forces generated by 

extractor and accelerator electrodes 

❖ Grid impingement is most sensitive to the distribution of initial emission angles of droplets entering the 

plume region domain

Approach:

❖ Develop a robust, data-driven modeling framework for rapid lifetime and performance estimation

❖ Implement surrogate modeling techniques to reduce computational complexity of physics-based model

❖ Apply Bayesian inference and statistical learning with available experimental results in lieu of higher 

fidelity, direct numerical simulations
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BONUS SLIDE: Plume Modeling Framework (Approach Overview)

𝕄
𝑞

𝑚
, 𝑧𝑖 , 𝜃𝑖, 𝑠𝑖 , 𝛾𝑖 → 𝜃𝑓

𝑓
𝐾𝐸𝑖
𝑞

, 𝑓(𝑧𝑖, 𝜃𝑖) , 𝑓 𝛾𝑖

ሶ𝒎 𝜽 , 𝒋 𝜽 @ 𝒛 = 𝒛𝒇

?

Un-accelerated Profiles

Accelerated 

Profiles

?

1 2 3 1

2

3

Forward Propagation

Backward Propagation

Prediction of plume 

profiles in arbitrary 

domain

MODEL INPUTS

MODEL

MODEL OUTPUTS
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UCLA’s high-speed 
videography and modeling 
implicate ”traffic jam” 
collisions as primary cause 
of plume expansion

Mass and Charge Evolution in Electrospray Plumes for High Delta-V Thrusters

• Project Objective: Use advanced plume diagnostics and physics-based modeling to understand the mass and charge evolution in electrospray 

thruster plumes to predict performance and life for Air Force missions 

• PI: Richard E. Wirz, UCLA, Plasma & Space Propulsion Laboratory

Challenge: Understanding 
mass ( ሶ𝑚) and charge (𝑞)
evolution in electrospray 
plumes is critical for thruster 
life & performance

ሶ𝑚

𝑞

UCLA and Air Force 
plume measurements 
show disparate 
evolution of mass and 
charge

Plume diagnosticsElectrospray 
Experiment
UCLA

Current Effort: UCLA is developing advanced diagnostics 
and physics-based modeling capabilities for determining 
electrospray thruster life & performance

Charge

filtering 

grids

Mass 

detector

Plume 
species

Precision charge & 
mass detector

Modeling

“traffic jam”

Time in 𝜇𝑠

Physics-based 
plume modeling

(video)

Electrospray Thruster
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BONUS SLIDE: Data-driven Modeling at the UCLA PSPL

ESCARGOT

DELI PEPPER

D

A
T
A

PSPL-EHD

D

A
T
A

Physics of electrosprays at UCLA PSPL investigated by computational models and experimental observations.
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BONUS: Results – COMSOL Charged Particle Tracing

Electric Field Solver: 

𝑬 = −∇𝑉

• Physics-controlled, “extremely fine”, 
unstructured triangular mesh

• Bias Voltages set to: 𝑉𝑒𝑚𝑖𝑡 = 6 𝑘𝑉; 𝑉𝑒𝑥𝑡𝑟 =
4.4 𝑘𝑉; 𝑉𝑎𝑐𝑐 = −1 𝑘𝑉; 𝑉𝑏𝑒𝑎𝑚𝑑𝑢𝑚𝑝 = 0 𝑘𝑉

• Other Boundary Conditions: 

– Axial Symmetry at 𝑟 = 0

– Zero Charge elsewhere

Charged Particle Tracing: 

𝑑 𝑚𝑝𝒗

𝑑𝑡
= 𝑭𝑒 = 𝑒𝑍𝑬

where 𝑒 is elementary charge, 𝑚𝑝 is the particle 

mass, and 𝑍 is the charge number.

• “Freeze” BCs at particle outlet (i.e. domain exit)

• Particle release conditions include initial kinetic 
energy, 𝐸0, and initial particle direction, 𝛾𝑖
– Values for 𝐸0 set to keep 

𝐾𝐸

𝑞
constant at ~102 𝑉

for EMIM [1, 2] 

[1] M. Gamero-Castaño, “Characterization of the electrosprays of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide in vacuum,” Phys. Fluids, vol. 20, no. 3, p. 32103, Mar. 2008, doi: 10.1063/1.2899658.

[2] M. Gamero-Castaño and A. Cisquella-Serra, “Electrosprays of highly conducting liquids: A study of droplet and ion emission based on retarding potential and time-of-flight spectrometry,” Phys. Rev. Fluids, vol. 6, no. 1, p. 13701, Jan. 2021, doi: 

10.1103/PhysRevFluids.6.013701.
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BONUS: Results – Surrogate Modeling

Goal: By how much (relatively) does each input parameter, 𝛉𝐢, 𝛄𝐢, and 𝐕𝐚𝐜𝐜, 
influence the output parameter, 𝛉𝒇, in 𝕄PCE: 𝛉𝐢, 𝛄𝐢, 𝐕𝐚𝐜𝐜 → θf?

𝑉 𝑓(𝑋) = 𝔼 𝑓(𝑋) − 𝔼 𝑓(𝑋) 2

𝑓 𝑿

= 𝑓0 +

𝑖=1

𝑝

𝑓𝑖(𝑋𝑖) +⋯+ 𝑓1,2,…,𝑛(𝑋1, … , 𝑋𝑝)

𝑉 = σ𝑖=1
𝑝

𝑉𝑖 +σ1≤𝑖≤𝑗≤𝑝𝑉𝑖𝑗 +⋯+ 𝑉1,2,…,𝑝

𝑆𝑢 =
𝑉𝑢

𝑉
, where 𝑆𝑢 ≤ 1

The result is a first-order sensitivity index. We can now 

conduct a quantitative sensitivity analysis of our physical 

parameters using variance-based Sobol indices.

The variance of any function (like 𝑌𝑃𝐶𝐸 = 𝕄(𝐗) from before) is defined by:

Suppose we have a function, 𝑓(𝑿), where X = X1, X2, … , 𝑋𝑖 defines the 

set of independent random variables for some 𝑖 ∈ [0, 𝑝]. We can find 

the importance of each 𝑋𝑖 on 𝑉 𝑓(𝑿) by decomposing 𝑓(𝑿) into 2𝑝

orthogonal functional terms of increasing dimension [1]:

Then, the total variance of 𝑓(𝑿) follows, where 𝑉 is the total 

variance and 𝑉𝑖 is the partial variance contribution of 𝑋𝑖, and 𝑉𝑢(𝑢 ∈
1, … , 𝑝 ) is the interactive variance contribution of 𝑋𝑢 (one can 

think of it as a conditional variance, where 𝑉𝑢 = 𝑉 𝑓 𝑋𝑖 𝑋𝑖 ):

[1] Sobol IM (1993) Sensitivity estimates for nonlinear mathematical models. Math model comput exp 1(1):112–118

[2] Sudret B (2008) Global sensitivity analysis using polynomial chaos expansions. Reliab Eng Syst Saf 93(7):964–979

*ANOVA decomposition specifically for PCEs [2]



Shehan Parmar, SciTech 2022 21

FIGURE: PEPPER – Model Diagram

Electrospray Multiphysics 

Model

𝑚
𝑑2𝒙

𝑑𝑡2
=

𝑖=1

𝑁𝑀

𝐹𝑖

Electrospray Experimental 

Data

ሶ𝑚 𝜃 𝑖 for 𝑖 ∈ [0,𝑁𝐷]

Electrospray Surrogate 

Model

𝒙 𝑡 = 𝕄(𝑿)

Inference of Unknown 

Model Parameters

Increase 

Model Fidelity

𝑁𝑀 += 1

Address High 

Uncertainty

𝑁𝐷 += 1
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