
Multi-Physics and Data-Driven Modeling
for Electrospray Propulsion

Shehan M. Parmar (First Year Fellow) 1 Richard E. Wirz 1

1University of California, Los Angeles, Los Angeles, CA

Motivation

Electrosprays have led to many scientific discoveries, from Nobel prize-winning elec-

trospray ionization techniques, quantum dot nanofabrication, controlled drug deliv-

ery, to spacecraft propulsion. Electrosprayswork by applying strong electric fields to

highly-conductive ionic liquids (ILs) to generate a thin liquid jet and uniform stream

of high-velocity nanodroplets.

Understanding jet and droplet dynamics are critical to improving electrospray

performance. To this end, the UCLA PESPL has coupled benchtop and in vacuo

experimental testing with multi-scale computational modeling to investigate

physics- and chemistry-based phenomena that are important to understanding

electrospray operation. One intriguing but unexplained result from the data, is the

order 3 super-Gaussian shape of the plume’s mass flux profile.

Initial Design of 3D-Convolutional Neural Networks for Flow
Reconstruction

Behavior and onset of temporal jet instabilities during electrospray operation are due

to complex and often stochastic, electrohydrodynamics that is difficult to solve via

computational fluid dynamics. To leverage high-speed microscopy of electrospray

emission and plume expansion, convolutional neural networks (CNNs) can be used to

reconstruct fluid flow data into a latent space representation for feature extraction.

The proposed architecture is currently under investigation.
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Physics-based & Reduced-order Modeling

The governing equation for charged particle motion in a collision-less domain is
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where ~xi is the position of particle i,
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i is the particle’s specific charge, and φext is

the potential field from the electrodes. A model surrogate is used and defined by a

polynomial chaos expansion (PCE),

M( ~X) =
∑

α∈Nd

yαΨα( ~X), (2)

where a basis set of orthogonal, Hermite polynomials, {Ψα( ~X), α ∈ Nd}, is bounded
by the dimension d of the input parameter space ~X . A Sobol analysis shows that

angles of the emitted species entering the domain, γi, dominates the plume shape.

Inverse Problem Formulation

An inverse formulation can be used to help explain the super-Gaussian mass flux

profiles. Formally, an inverse problem is defined by

g = M(f ) + ε, (3)

where some measured data, g ∈ Y , is the result of a forward problem where model

parameters, f ∈ X , are mapped by an operator,M, within observational noise, ε ∈ Y .

A likelihood function using this formalism is used to solve the inverse problem,

prob(ṁ(θ)UCLA|θi, γi, I) =
N∏
i

k∑
j=1

αjprob(ṁ(θ)i|θi, γi, I) (4)

where θi and γi are the uncertain parameters, we wish to quantify, ṁ(θ)UCLA,QCM
denotes the mass flux profile measurements provided by UCLA PESPL, and I repre-

sents any background knowledge available for this problem.

Molecular Simulation of Ionic Liquid Nanodroplets

Classical molecular dynamics simulations of two imadazolium-based ionic liq-

uids, EMI–BF4 and EMIM–Tf2N, were conducted to investigate effects of high-

magnitude electric fields on ion extraction at nanodroplet-vacuum interfaces.

Initialization ofmolecule positionswas computed using optimal packing algorithms in

Packmol; equilibration of quasi-spherical nanodroplets consisted of canonical (NVT)

and microcanonical (NVE) ensemble calculations; productions runs were completed

in the NVE ensemble for 24 unique droplet configurations.

125 EMI+ cation (red) and BF4
– anion (blue) pairs

Summary of Results

1. Electric field strengths past 1.5 V/nm resulted in droplet breakup and fracturing.

2. Simulations exhbitied preference tomonomer emission compared to experiments.

3. Comparison between EMI–BF4 and EMIM shows influence of

hydrogen bond strength (and thereby cation-anion attractive forces) on emission

timescales.
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FutureWork: Development of Transferable MD Force Fields

Improvement of future in-space propulsion technologies will depend on a

fundamental understanding of ionic liquid chemical break down mechanisms in dy-

namic environments. Electrostatics are influenced by local dipole moments

that cannot be accurately described by fixed-charge interatomic potentials; thus,

polarizable force fields are being developed for various candidate propellants of in-

terest to investigate structural, thermophysical, and dynamic properties.
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