

Motivation

- Ionic liquids (ILs) are low-melting point ($\leq 100 \,^{\circ}$ C) organic salts with favorable properties for gas separation (e.g., CO₂ capture), energy generation and storage, or even in-space propulsion.
- Polarizable force fields are essential for accurate electrostatic and transport property predictions (Bedrov et al. Chem. Rev. 2019 119 (13), 7940-7995).
- Investigating local nanostructure serves as an instrumental step towards understanding and tuning macroscopic properties for optimal technology design.

Figure 1. Computational domain and molecular/charge structure of hydroxyethylhydrazinium nitrate (HEHN). Production simulations conducted using the APPLE&P software for 400 cation-anion pairs in the NPT ensemble for ~ 10 ns.

Figure 2. Domain and molecular structure of methyltrioctylammonium bis(trifluoromethylsulfonyl)imide ([N₁₈₈₈][TFSI]). Production simulations conducted using the **OpenMM** software for **1600 (!!) cation-anion pairs** in the NPT ensemble for ~ 50 ns.

Theory and Methods

Induced Dipole Moment Method

atomic polarizability tensor

$$\vec{\mu}_{i\beta}^{\text{ind}}(t) = 4\pi\epsilon_0 \hat{\alpha}_{i\beta} \cdot$$

Classical Drude Oscillator Model

$$\vec{\mu}_{i\beta}^{\text{ind}}(t) = q_{i\beta}^{D} \cdot \vec{d}$$

polarizable atom β of molecule *i*

Scattering (S_{NN}) and Charge-correlation (S_{ZZ}) Structure Factors

Understanding Ionic Liquid Structure via Polarizable Molecular Dynamics Simulations

Shehan M. Parmar (Second Year Fellow)¹ Jesse G. McDaniel¹

¹Georgia Institute of Technology, Atlanta, GA

Drude particle partial charge

Summary of Results

Summary of Results

- simulation turnaround for new systems

(3)

Results: HEHN

1. Spatial distribution functions (SDFs) indicate the hydrogens of **amine** and **hydroxyl** groups as hydrogen bond **donor sites**. 2. N – H···O and O – H···O H-bonds are strong (≤ 2.2 Å) and linear ($\sim 20 - 30^{\circ}$).

Results: [N1888][TFSI]

1. Two dominant spatial motifs manifest, where [TFSI] N and O preferentially coordinate with the cationic N. 2. N₁₈₈₈ apolar chains produce polarity domain formation, as evidenced by low wavevector S_{NN} peaks. 3. Charge-correlation structure factor indicates the length scale, $k \sim 0.75 \,\text{\AA}^{-1}$, of important Coulombic interactions.

Future Work & Acknowledgements

• HEHN is a potential rocket propellant constituent \rightarrow reactive force field simulations • Unexplained data on $[N_{1888}]$ [TFSI] at charged gold surface \rightarrow interfacial simulations • Developing polarizable MD force fields is challenging \rightarrow machine learning to improve

sparmar32@gatech.edu